US ERA ARCHIVE DOCUMENT

Yolo County Full-Scale Landfill Bioreactor (EPA Project XL)

US EPA Workshop on
Bioreactor Landfills
February 27-28, 2003
Ramin Yazdani, Project Manager

Yolo County

Planning and Public Works Department Division of Integrated Waste Management

Phone (530) 666-8848; Ramin. Yazdani@Yolocounty.org

Presentation Summary

- Project Objectives and Goals
- Achievements to Date
- Project Results
- Project Challenges
- Conclusions

Project Partners

Project Partners:

- California Integrated Waste Management Board
- California Energy Commission-PIER
- National Energy Technology Laboratory, U.S. DOE
- Western Regional Biomass Energy Program, U.S. DOE
- Institute for Environmental Management (Tech. Support)
- U.S. Environmental Protection Agency
- Solid Waste Association of North America
- California State Regional Water Quality Control Board
- California State Water Resources Control Board
- California Air Resources Control Board
- Yolo-Solano Air Quality Management District
- Yolo County Environmental Health

Project Objectives

- Demonstrate landfill full-scale operation to accelerate methane generation (anaerobic) and eliminate methane production (aerobic) through liquid addition without significant liquid head build up over the base liner
- Document and provide project technical data to regulatory agencies for permitting an acceptance of full-scale bioreactor operation (EPA project XL)
- Improve methane gas efficiency capture of nearly all methane generated without impact to air quality
- Determine cost benefit ratio for full-scale operation

Project Goals

- Instrument landfill to collect and analyze:
 - Landfill gas volumetric flow, temp., composition
 - Landfill leachate volumes, temp., pH, chemistry
 - Landfill waste temp., moisture content & settlement
 - Measure liquid level above the landfill base liner
 - Parasitic energy use for operation
- Develop mass balance and model leachate and methane gas generation over time
- Develop cost benefit ratio for the project

Anaerobic & Aerobic Process for Treatment of Waste

(Phase I)

Produce Power 6-10 years

Pull All LFG &

25% volume reduction

Biofilter

Aerobic Bioreactor (Phase II) Pull Air & Treat Air

2-3 years

20% volume reduction

FUTURE PROJECT

Aerobic Mining (Phase II)

2-3 years

20% volume reduction

Residual Waste

Compost and Inerts

To Landfilled

50% of treated

On Site Cover

or

Compost 50% of treated

Project Location Map

Project Site Map

Project Summary

Yolo County Waste Percent by Weight

(44% Residental, 42% Commercial, 14% Industrial)

Full-Scale Project Site Map

Construction of base liner system

Construction of landfill waste filling

Base Layer Instrumentation

0- <u>36</u> 1,g 0- <u>39</u> 1,5	0	ero Cett	bic
0- <u>43</u>	<u>0-</u> 44 2 1,5 5/	0- <u>45</u>	<u>0-</u> 46
0- <u>47</u> 1,8,9	1-9 1-9	0- <u>49</u>	0-50 1.9
0- <u>054</u> 1.5	0-52 T	0- <u>53</u>	0_ 54 1.5

0-55	a-56 (0-57	C-58
1,6	1.9	14 T.4	7.6
0- <u>59</u> Æe	₁-。。 röb	ic C	<u>-</u> 62 'et l
0- <u>63</u>	<u>() – 15</u> 4	0- <u>65</u>	<u>C—</u> 646
<i>3</i> .5	Ac	res	7,8

LEGENE

PT = Pressure Transducer
TLL = Trench Liquid Level Tube

T = Temperature Sensor

M = PVC Moisture Sensor

S = Sampling Tubes

Construction of the instrumentation system (Temperature, Moisture, Tubes)

Northeast 3.5-acre anaerobic cell x-section

Southeast 2.5-acre aerobic cell x-section

Southeast 2.5-acre aerobic cell x-section

3.5 agre Anaerobic Cell 2.5 acre Aerobic Cell 6.0 acre Anaerobic Cell

